

for the measurement of electrical variables in heavy current power systems

Application

The RISH Ducer M42, M24 series of multi - transducers (Fig. 1) simultaneously measure several variables of an electric power system and process them to produce 2 resp. 2 or 3 Analog outputs are available or power metering. For two of the limit outputs up to three misbrands can be logically combined.

The multi-transducers are also equipped with an RS 232 serial interface to which a PC with the corresponding software can be connected for programming or accessing and executing useful ancillary functions.

The usual modes of connection, the types of measured variables, their ratings. the transfer characteristic for each output etc. are the main parameters that have to be programmed.

Ancillary functions include a power system check, provision for displaying the measured variably on a PC monitor, the simulation of the outputs for test purposes and a facility for printing nameplates.

Features / Benefits

Simultaneous measurement of several variables of a heavy-current power system / full supervision of an asymmetrically loaded four-wire power system ,rated current 1 to 6 A, rated voltage 57 to 400V (phase-toneutral) or 100 to 693V (phase - to - phase)

Measured variables	Output	Types
Current ,Voltage (rms) , active/reactive/apparent power	2 analog output and	RISHDucer
$\cos \phi$, $\sin \phi$, power factor	4digital outputs	M24
RMS value of the current with	Or	RISHDucer
wire setting range (bimetal measuring function)	4 analogue pouts and 2 digital outputs	M42
Slave pointer function for the measurement of the RMS	4 analogue outputs and bus	RISHDucer
value IB Frequency	RS 485 (MODBUS) See Data Sheet M 40	M40 *
Average value of the currents with sign of the active power	Data bus (LON) See Data Sheet	RISHDucer
(power system only)	M 00	M 00 *

- For all heavy-current power system variables
- Up to 6 outputs (2A+4D or 4A+2D)
- Input voltage up to 693V (phase-to-phase)
- Universal analogue outputs (programmable)
- High accuracy: U/I 0.2% Frequency 0.15 % and P 0.25 % (under reference conditions)
- Universal digital outputs (meter transmitter, limits)
- Up to 2 or 4 integrated power meters.

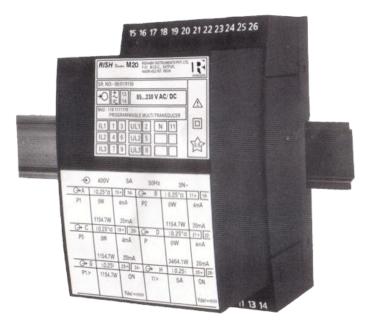
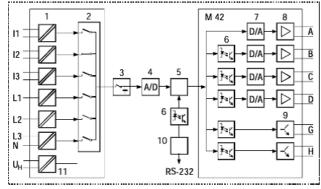



Fig.1.the universal basic version

RISHDucer M20, M30 in housing T24, clipped onto a top-hat rail.

- Windows software with password protection for programming. data analysis, power system status simulation, acquisition of meter data and making settings
- AC/DC power supply/universal
- Provision for either snapping the transducer onto top-hat rails or securing it with screws to a wall or panel

M 24

Þκ

h

F

-4 G

·≺ I⊐

- 1 = Input transformer
- 2 = Multiplexer
- 3 = Latching stage
- 4 = A/D converter
- 5 = Microprocessor
- 6 = Electrical insulation
- 7 = D/A converter
- 8 = Output amplifier/latching stage
- 9 = Digital output (open-collector) 10 = Programming interface RS-232

*Contact to factory for complete details

Symbols

Х	Measured variable		
Х	Measured variable		
		Q	Reactive power of the system
X0	Lower limit of the measured variable		Q = Q1 + Q2 + Q3
X1	Break point of the measured variable	Q1	Reactive power phase 1 (phase-to-neutral L1 - N)
X2	Upper limit of the measured variable	Q2	Reactive power phase 2 (phase-to-neutral L2 - N)
Y	Output variable	Q3	Reactive power phase 3 (phase-to-neutral L3 - N)
Y0	Lower limit of the output variable	s	Apparent power of the system
Y1	Break point of the output variable	5	$S = \sqrt{\frac{1}{1} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}} \sqrt{\frac{1}{1} + \frac{1}{2} + \frac{1}{2}} \sqrt{\frac{1}{2} + \frac{1}{2} + \frac{1}{2}} \sqrt{\frac{1}{2} + \frac{1}{2} + \frac{1}{2}}$
Y2	Upper limit of the output variable	S1	Apparent power phase 1 (phase-to-neutral L1 - N)
U	Input voltage	S1 S2	Apparent power phase 2 (phase-to-neutral L2 - N)
Ur	Rated value of the input voltage	S3	
U12	Phase-to-phase voltage L1 - L2	Sr	Apparent power phase 2 (phase-to-neutral L3 - N)
U23	Phase-to-phase voltage L2 - L3	01	Rated value of the apparent power of the system
U31	Phase-to-phase voltage L3 - L1	PF	Active power factor cos ϕ = P/S
U1N	Phase-to-phase voltage L1 - N	PF1	Active power factor phase 1 P1/S1
U2N	Phase-to-phase voltage L2 - N	PF2	Active power factor phase 2 P2/S2
U3N	Phase-to-phase voltage L3 - N	PF3	Active power factor phase 3 P3/S3
UM	Average value of the voltages (U1N + U2N + U3N) / 3	QF	Reactive power factor sin ϕ = Q/S
I	Input current	QF1	Reactive power factor phase 1 Q/S
11	AC current L1	QF1 QF2	Reactive power factor phase 2 Q2/S2
12	AC current L2	QF2 QF3	Reactive power factor phase 3 Q3/S3
13	AC current L3	QIJ	
lr	Rated value of the input current	LF	
IM	Average value of currents (I1 + I2 + I3) / 3		Power factor of the system
IMS	Average value of the currents and sign of the active power (P)	LF1	LF = sgn Q • (1- PF)
IB	RMS value of the current with wire setting range (bimetal measuring function)		Power factor phase 1 sgnQ1 • (1- PF1)
IBT	Response time for IB	LF2	Power factor phase 2 sgnQ2 • (1- PF2)
BS	Slave pointer function for the measurement of the RMS value IB	LF3	Power factor phase 3 sgnQ3 • (1-IPF3])
BST	Response time for BS		
φ	Phase-shift between current and voltage	с	Factor for the intrinsic error
F	Frequency of the input variable	R	Output load
Fn	Rated frequency	Rn	Rated burden
Р	Active power of the system P = P1 + P2 + P3	Н	Power supply
' P1	Active power phase 1 (phase-to-neutral L1 - N)	Hn	Rated value of the power supply
P2	Active power phase 2 (phase-to-neutral L2 - N)	СТ	c.t. ratio
P3	Active power phase 3 (phase-to-neutral L3 - N)	VT	
. •			v.t. ratio

Applicable standards and regulations

DIN EN 60 688	Electrical measuring transducers for converting AC electrical variables into analogue and digital signals
IEC 1010 or	5 5 5
EN 61 010	Safety regulations for electrical measuring, control and laboratory equipment
EN 60529	Protection types by case (code IP)
IEC 255-4 Part E5	High-frequency interference test (solid-state relays only)
IEC 1000-4-2,3,4,6	Electromagnetic compatibility for industrial process measurement and control equipment
VDI/VDE 3540	
Page 2	Reliability of measuring and control equipment (classification of climates)
DIN 40 110 DIN 43 807	AC quantities
IEC 68/2-6	Terminal markings Basic environmental testing procedures, vibration, sinusoidal
IEC 1036	Solid state AC watt hour meters for active power (Classes 1 and 2)
DIN 43864	Current interface for the transmission of impulses between impulse encoder counter and tariff meter
UL 94	Tests for flammability of plastic materials for parts in devices and appliances

Continuous thermal ratings of inputs

Current circuit	10 A 400V single- phase AC system 693 V three-phase system
Voltage circuit	480 V single-phase AC system 831 V three-phase system

Short-time thermal rating of inputs

Input variable	Number of inputs	Duration of overload	Interval between two overloads
Current circuit	400 V single-ph 693 V three-p	nase AC system phase system	
100 A	5	3 S	5 min.
250 A	1	15	1 hour
Voltage circuit	1 A,2 A,5 A		
Single-phase AC system 600 V H intem:1.5 Ur	10	10 S	10 S
Three-phase system 1040 V H intem:1.5 Ur	10	10 S	10 S

Analogue outputs \bigcirc For the outputs A,B,C,D

Output vari	able Y	Impressed DC current	Impressed DC voltage
Full scale Y	′2	see" Ordering Information"	see" Ordering Information"
Limits of ou signal for in overload	iput		
and/or	R = 0	1.25 • Y2	40 mA
	R → ∞	30V	1.25 Y2
Rated useful of output lo	0	$0 \le \frac{7.5 \mathrm{V}}{\mathrm{Y2}} \le \frac{15 \mathrm{V}}{\mathrm{Y2}}$	$\frac{Y2}{2mA} \le \frac{Y2}{1mA} \le \infty$
AC compor output signa (peak-to-pe	al	≤ 0.005 Y2	≤ 0.005 Y2

The outputs A,B,C may be either short or open- circuited.

They are electrically insulated from each other and from all other circuits (floating)

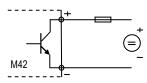
Technical data

Inputs 🔶
Input variables:
Measuring ranges:
Waveform:
Rated frequency:
Consumption:

see Table 2 and 3 see Table 2 and 3 Sinusoidal 50...60 Hz; 16 2/3 Hz Voltage circuit: $\leq U^2 / 400$ kW Condition external power supply

Current circuit: 0.3 VA • I/5 A

All the full-scale output values can be reduced subsequently using the programming software, but a supplementary error results.


The hardware full-scale settings for the analogue outputs may also be changed subsequently. Conversion of a current to a voltage output or vice is also possible This necessitates changing resistors on the output board. The full-scale values of the current and voltage outputs are set by varying the effective value of two parallel resistors (better resolution). The values of the resistors are selected to achieve the minimum absolute error. Calibration with the programming software is always necessary following conversion of the outputs. Refer to the Operating instructions. caution: The warranty is void if the device is tampered with

Digital outputs, pulse outputs, limit outputs

The digital outputs conform to DIN 43 864. The pulse width can be Neither programmed nor is there a hardware setting.

either programmed no Type of contact: Number of pulses: Pulse duration: Interval: Power supply: Output cement:

Open collector see "Ordering information ≥ 100 ms ≥ 100 ms 8...40V ON 1027 mA OFF ≤ 2 ms

Reference conditions

Ambient temperature:	+ 23 °C ± 1K
Pre-conditioning:	30 min. acc. to DIN EN 60 688 Section 4.3, Table 2
Input variable:	Rated useful range
Power supply:	H = Hn ± 1%
Active/reactive factor:	$\cos \phi = 1 \text{ resp.sin } \phi = 1$
Frequency:	5060 Hz,16 2/3 Hz
Waveform:	Sinusoidal, form factor 1.1107
Output load:	DC current output: $R_{n} = \frac{7.5 \text{ V}}{\text{Y2}} \pm 1\%$
	DC voltage output: $R = \frac{Y2}{1mA} \pm 1\%$

DIN EN 60 688

Miscellaneous:

System response

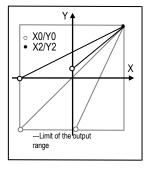
Accuracy class: (the reference value is the full-scale value Y2)

		A 1 ±
Measured	Condition	Accuracy class*
variables		
System:		
Active, reactive	0.5 ≤ X2/Sr ≤ 1.5	0.25 c
and apparent	0.3 ≤ X2/Sr < 0.5	0.5 c
power		
Phase:		
Active, reactive	$0.167 \le X2/Sr \le 0.5$	0.25 c
and apparent	0.1 ≤ X 2/Sr < 0.167	0.5 c
power		
Power factor	0.5Sr ≤ S ≤ 1.5 Sr	0.25 c
active, reactive	(X2 - X0) = 2	
and apparent	0.5Sr ≤ S≤1.5 Sr	0.5 c
power	1 ≤ (X2 - X0) < 2	
	0.5 Sr ≤ S ≤ 1.5 Sr	1.0 c
	0.5 ≤ (X2 - X0) < 1	
	0.1Sr ≤ S < 0.5 Sr	0.5 c
	(X2 - X0) = 2	
	0.1Sr ≤ S < 0.5 Sr	1.0 c
	1 ≤ (X2 - X0) < 2	1.0 0
	0.1Sr ≤ S < 0.5 Sr	2.0 c
	0.5 ≤ (X2 - X0) < 1	
AC voltage	0.1 Ur ≤ U ≤ 1.2 Ur	0.2 c
AC current/	$0.1 \text{ Ir } \le 1 \le 1.5 \text{ Ir}$	0.2 c
current averages		0.2 0
System	0.1 Ur≤U≤1.2Ur	0.15 + 0.03 c
frequency	resp.	$(f_N = 5060 \text{ Hz})$
	$0.1 \text{ Ir } \le 1 \le 1.5 \text{ Ir}$	0.15 + 0.1c
		(f _N = 16 2/3 Hz
Pulse	acc. to IEC 1036	1.0
	$0.1 \text{ Ir } \le 1 \le 1.5 \text{ Ir}$	1.0
	0.111 - 1 - 1.011	

*Basic accuracy 0.5 c for applications with phase-shift

Duration of the

measurement cycle:


Approx.0.25 to 0.5 s at 50 Hz depending on measured variable and programming

Response time: 1....2 times the measurement cycle Factor c (the highest value applies):

Linear characteristic:	$C = \frac{1 - \frac{Y0}{Y2}}{1 - \frac{X0}{X2}} \text{ or } C = 1$
Bent characteristic: $X0 \le X \le X1$	$C = \frac{Y1 - Y0}{X1 - X0} \cdot \frac{X2}{Y2} \text{ or } C = 1$
X1 < X ≤ X2	$C = \frac{Y2}{1X2}$ or $C = 1$

M24 - 2 analogue outputs, M42 - 4 analogue outputs Programmable multi-transducer

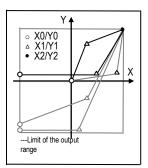


Fig.3 Examples of settings with linear characteristic

Fig. 4 Examples of settings with bent with bent characteristic.

Influencing quantities and permissible variations

Acc. to DIN IEC 688

Safety

ounory		
Protection class:	II	
Enclosure protection: Overvoltage category: Insulation test(versus earth):	IP 40,housing IP 20,terminals III Input voltage: Input current:	AC 400V AC 400V
	Output: Power supply:	DC 40V AC 400V DC 230V
Surge test: Test voltages:		
Power supply →○ AC voltage	100,110,230,400,500,or 693 ±10%,45 to 65 Hz Power consumption approx.	

AC/DC power pack (DC and 50... 60 Hz)

Table 1: Rated voltages and tolerances

Rated voltage U _N	Tolerance
2460V DC/AC	DC - 15+ 33%
85230V DC/AC	AC ± 10%

Consumption:

≤ 9 W resp. ≤ 10 VA

Programming connector on transducer

Interface: DSUB socket: RS 232 C 9-pin

Housing T24

of halogen

EN 50 022 or

Any

The interface is electrically insulated from all other circuits

See Section "Dimensioned drawings"

Flammability class V-0 acc. to UL 94 self-extinguishing, non-dripping, free

directly onto a wall or panel using the pull-out screw hole brackets

With supply transformer approx. 1.1 kg

With AC/DC power pack

approx. 0.7 kg

Lexan 940 (Polycarbonate).

For snapping onto top-hat rail (35 X 15 mm or 35 X 7.5 mm) acc. to

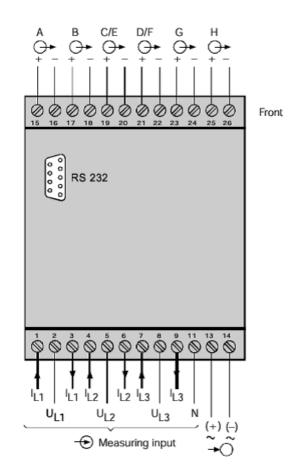
Installation data Housing:
Housing material:
Mounting:
Orientation: Weight:
Terminals

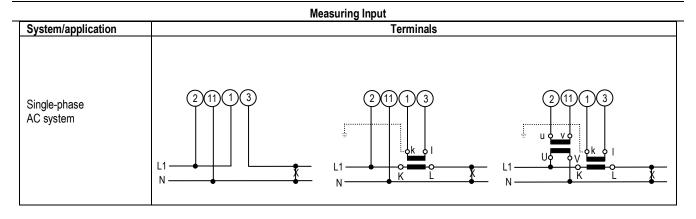
Terr Type: Screw terminals with wire guards Max. wire gauge: \leq 4.0 mm² single wire or 2 X 2.5 mm² fine wire

Vibration withstand

(tested according to DIN EN	60 068-2 -6)
Acceleration:	± 2 g
Frequency range:	1015010 Hz, rate of frequency
	sweep: 1 octave/minute
Number of cycles:	10 in each of the three axes
Result:	No faults occurred, no loss of accuracy
	and no problems with the snap
	fastener
Ambient conditions	
Climatic rating:	Climate class 3 acc. to VDI/VDE 3540
Variations due to ambient	
temperature:	± 0.1%/10 K
Nominal range of use	
for temperature:	0 <u>1530</u> 45 °C (usage group II)
Storage temperature:	- 40 to + 85 °C
Annual mean	
relative humidity:	≤ 75%

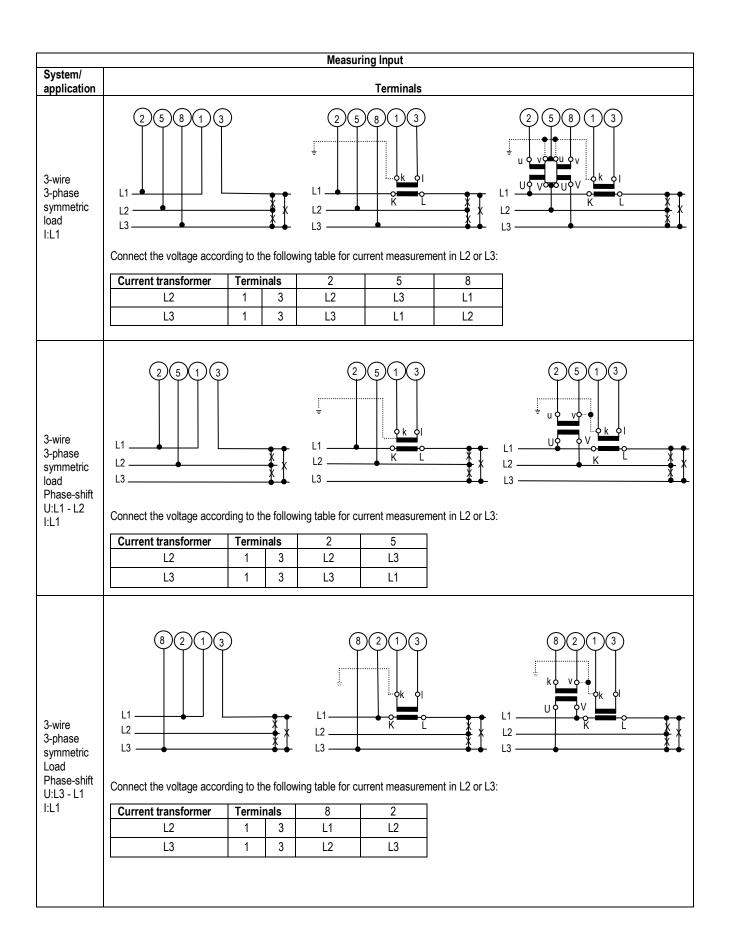
Orie Wei

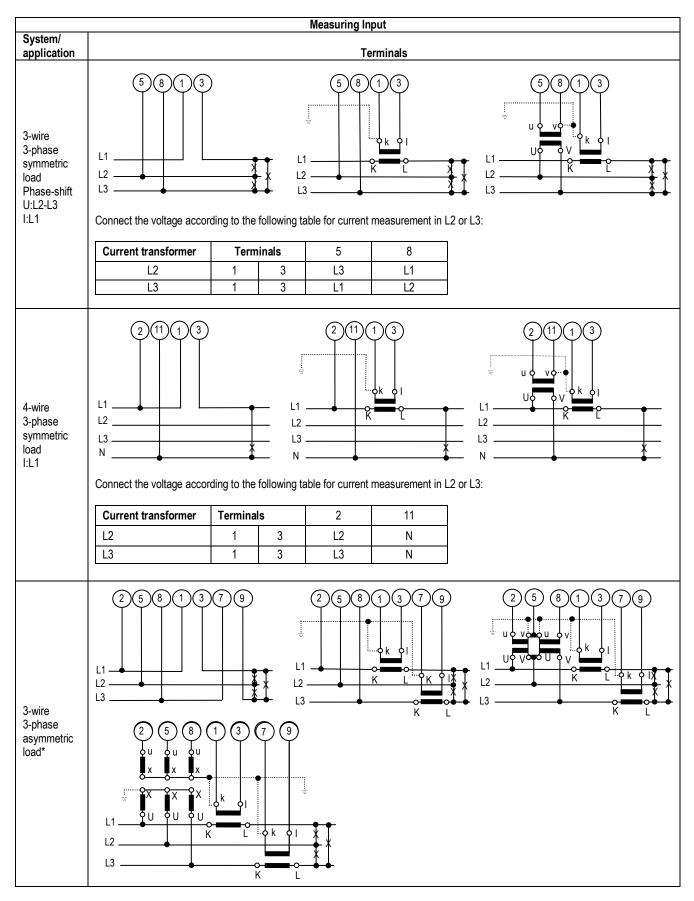



Electrical connections

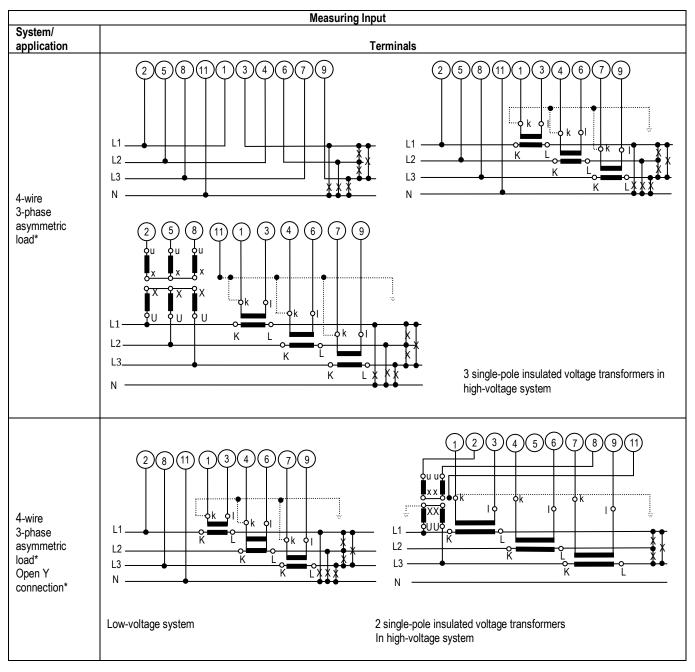
Function				Connection
Meas. input	AC curre	nt	IL1	1/3
- e i			IL2	4/6
			IL3	7/9
	AC voltage UL1 UL2		2	
			5	
			UL3	8
			N	11
Outputs	Analogue	Digital		
⊖ ►	⊖+ a		+	15
			_	16
	⊖⊷в		+	17
	_	_	-	18
	G≁c	⊖►E	+	19
			-	20
	⊖+D	⊖+F	+	21
			-	22
		⊖+G	+	23
		~	-	24
		⊖≁н	+	25
			-	26
Power suppl	y AC		~	13
→○ ```	-		~	14
	DC		+	13
			_	14

If power supply is taken from the measured voltage internal connections are as follow::


Application (system)	Internal connection Terminal / System
Single phase AC current	2 / 11 (L1 - N)
4-wire 3-phase symmetric load	2 / 11 (L1 - 2)
All other*	2 / 5 (L1 - L2)



*Contact to factory for complete details





*Contact to factory for complete details

*Contact to factory for complete details

-9-

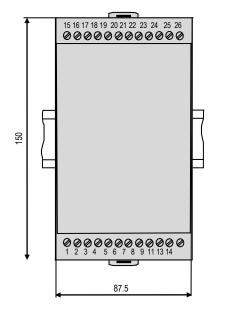
 Table 2:RishDucer M20, M30, standard version

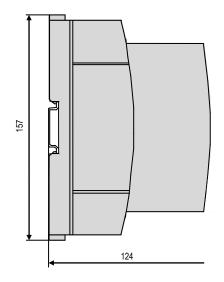
 The two versions of the transducer below with the basic programming are available AC Aux.& AC/DC Aux.

Description / Basic programming		M42	M24
Mechanical design: Rated frequency:	Housing T24 for rail and wall mounting 50 Hz (60 Hz admissible without additional error re-programming by user for user for 16 2/3Hz possible, but with additional error 1.25 C)]
Power supply:	230V AC 85230V DC/AC]
Power supply: Full-scale output signal, output A: Full-scale output signal, output B: Full-scale output signal, output C: Full-scale output signal, output D:	External connection (standard) Y2 = 20mA Y2 = 20mA Y2 = 20mA Y2 = 20mA		N.A N.A
Test certificate: Programming: See Table 3: "Ordering information for RISHDucerM20, M30 mo	None supplied Basic		
Basle programming		I	
Application: Input voltage:	4-wire, 3-phase system, asymmetric load (NPS) Design value Ur = 400V]
Input current:	Design value Ir = 5A Without specification of primary ratings]
Measured variable, output A: Output signal, output A:	P1; X0 = 115.47 W; X2 = 115.47W # DC current Y0 = -20mA; Y2 = 20mA Linear characteristic Standard limits		
Measured variable, output B: Output signal, output B:	P2; X0 = -115.47; X2 = 115.47W # DC current Y0 = -20mA; Y2 = 20mA Linear characteristic Standard limits		
Measured variable, output C: Output signal, output C:	P3; X0 = 115.47 W; X2 = 115.47W # DC current Y0 = 20mA; Y2 = 20mA Linear characteristic Standard limits		N.A
Measured variable, output D: Output signal, output D:	P:X0= -346.41: x2 = 346.41W # DC current Y0 = -20 mA; Y2 = 20 mA Linear characteristic Standard limits		N.A
Measured variable, output E:	Limit P: XI = 311.77 W # Output ON if X>XI	N.A	
Measured variable, output F:	Min.Pick-up delay Limit Q; XI = 34.64 var # Output ON if X>XI		
Measured variable, output G: Measured variable, output H:	Min.pick-up delay Limit P1; XI = 115.47 W # Output ON if X>XI Min.pick-up delay Limit I1; XI = 2 A #		
	Output ON if X>XI Min pickup delay		

#other specifications on request contact to Factory

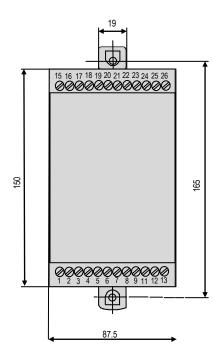
Table 3: Ordering information for RishDucer M20, M30 models (see also Table 2: Standard version)


DESCRIPT	ON	M20	M30
1.	Specify the type of system		
	(1 phase, 3 phase 3 wire / 3 phase 4 wire / balanced / unbalanced etc.) C.T. / P.T Ratio		
2.	Rated frequency		
	1) 50 Hz (60 Hz possible without additional error; 16 2/3 Hz additional error 1.25 • c)		
	2) 60 Hz (50 Hz possible without additional error; 16 2/3 Hz additional error 1.25 • c)		
	3) 16 2/3 Hz (not re-programming by user, 50/60 Hz possible, but with additional error 1.25 • c)		
3.	Power supply		
	Nominal range 1) AC 90110V H ₀ = 100V		
	2) AC 99121V Hn = 110V		
	3) AC 207253V Hn = 230V		
	4) AC 360440V Hn = 400V		
	5) AC 450550V Hn = 500V		
	6) AC 623762V Hn = 693V		
	7) DC/AC 2460V		
	8) DC/AC 85230V		
4	Power supply connection		
	1) External (standard)		
	2) Internal from voltage input**		
	Line 2: Not available for rated frequency 16 2/3 Hz		
	Contact Factory for furtner details		
5.	Full-scale output signal, output A		
	1) Output A, Y2 = 20mA (standard)		
	9) Output A, Y2 [mA] *		
	Z) Output A, Y2 [V] *		
	Line 9: Full-scale current Y2 [mA] 1 to 20		
	Line Z: Full-scale current Y2 [mA] 1 to 10		
6.	Full-scale output signal, output B		
	1) Output B, Y2 = 20mA (standard)		
	9) Output B, Y2 [mA] *		
	Z) Output B, Y2 [V] *		
7.	Full-scale output signal, output C		
	1) Output C, = Y2 mA (standard)	N.A.	
	9) Output C, = Y2 [mA] *	N.A.	
	Z) Output C, = Y2 [V]	N.A.	
8.	Full-scale output signal, output D		
	 <u>2)</u> Output D, = Y2 mA (standard) <u>9)</u> Output D, = Y2 [mA] 		
	Z) Output D, = Y2 [V]		
9.	Digital Output E		
	Specify output i) Limit control or	N.A.	
	ii) Pulse output	N.A.	
	Also specify the parameter and their details separately		
10.	Digital Output F		_
	Specify output i) Limit control or ii) Pulse output	N.A. N.A.	<u> </u>
	Also specify the parameter and their details separately	<u>ім.</u> д.	
11.	Digital Output G		
	Specify output i) Limit control or		
	ii) Pulse output		
	Also specify the parameter and their details separately		


*Specify separately **Contact Factory for complete details

ESCRIPON	M 42	M 24
12. Digital Output H		
Specify output i) Limit control or	N.A.	
ii) Pulse output	N.A.	
Also specify the parameter and their details separately		
13. Test certificate		
0) None supplied	N.A.	
1) Supplied	N.A.	
14. Programming		
0) Basic		
1) According to specification		
Line 0: Not available if the power supply is taken from the voltage input		

Dimensioned drawings



T24 clipped onto a top-hat rail

Table 4: Accessories

Fig.6 RISHDucer M20, M30 in housing (35 15 mm or 35 7.5 mm, acc. to EN 50 022).

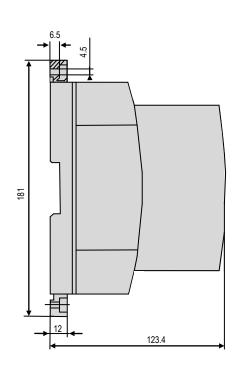


Fig.7.RISH Ducer M20, M30 in housing Brackets pulled out.

T24, screw hole mounting